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A Monte Carlo simulation is developed for the study of rapidly deforming, steady, 
simple shear flows of inelastic disks or spheres. The simulation is based on the 
theoretical framework of the kinetic theory of dense gases. In the simulation, space 
is discarded in an explicit sense and replaced by an isotropic, homogeneous, and 
uncorrelated space based on the assumption of a state of simple shear, a uniform 
concentration field, and molecular chaos. The simulation generates a distribution of 
particle velocities which corresponds to the parameters of the flow. The velocity 
distribution is a numerical solution to the Boltzmann equation under these 
conditions. The Monte Carlo simulation defines the limits to the accuracy of 
analytical granular flow theories based on the kinetic theory and the assumption of 
molecular chaos. 

1. Introduction 
The flow of granular material is an important transport process that occurs in 

numerous industrial applications and in many geophysical settings. Examples of 
such granular flows are found in powder technology, in grain handling, in slurry 
transport by pipeline, in avalanches, and in the transport of sediment and ice in 
rivers and oceans. 

Bagnold (1954) began the study of rapidly shearing granular flows. He argued that 
because both the collision frequency and the momentum transferred by collisions 
between grains were proportional to the rate of shear, the stresses must be 
proportional to the square of the rate of shear. Savage & Jeffrey (1981), building on 
the work of Chapman & Cowling (1970), placed the problem of rapidly shearing 
granular flows in the context of the kinetic theory of dense gases. 

In the framework of the kinetic theory of dense gases, as a result of a collision 
between two particles, a quantity $, which depends on velocity, changes to $*. The 
general form of the collisional rate of change of $ per unit volume C($) in a system 
of identical spheres was expressed by Jenkins & Savage (1983) as 

C($) = J”($: - $ z ) f ‘ 2 ’ ( C , ,  rll CZ, 1 2 )  m c ,  - c2) - kl dk dc, dcz, (i) 

where r and c denote, respectively, the positions and velocities of the two spheres, 
k is a unit vector on the line connecting the centre of sphere 1 to the centre of sphere 
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2, and CT is the diameter. The functionf(2)(cl, rl, c,, r2) is the general form of the pair 
distribution function which defines the likelihood of finding a pair of particles with 
their centres located at  the points rl and r2 (separated by a distance a)  with velocities 
c1 and c2. 

A simpler form of (i), used by granular flow theories based on the kinetic theory 
of dense gases, follows from the assumption of molecular chaos. The implications of 
that assumption are that the positions and velocities of colliding particles are 
uncorrelated. This assumption allows the pair distribution function f ( 2 )  in (i) to be 
replaced by the product of two independent single particle velocity distributionsf") 
and an isotropic radial distribution function 2.  The isotropic radial distribution 
function, which depends on the solid fraction, defines the likelihood of finding two 
particles in contact. With these simplifications (i) becomes 

Subsequent granular flow theories, following Jenkins & Savage (Lun et al. 1984; 
Jenkins & Richman 1988; Richman & Chou 1992), have generated more accurate 
constitutive relations, in comparison with full Newtonian particle simulations 
(Campbell 1989; Walton 1983; Walton & Braun 1986), by using more accurate 
approximations of the single particle velocity distribution. 

Jenkins & Richman (1988) derived constitutive relations for a system of identical, 
smooth disks from the balance equations for the second moment of the particle 
velocities. The solution was based on the assumption of molecular chaos and a 
modified Maxwellian form for the velocity distribution. The mathematical form of 
the solution removed the restriction to nearly elastic particles common to previous 
solutions. However, the constitutive relations had separate forms in the dilute and 
dense limits. Recently, using the same approach, Richman & Chou (1992) derived 
constitutive relations for a system of identical, smooth spheres valid for all solid 
fractions. 

The subject of the present work is the development of a Monte Carlo simulation 
of a rapidly deforming simple shear flow of identical disks or spheres. The single 
particle velocity distributionf (l) is created by the simulation, in accordance with the 
given flow parameters (shear rate, solid fraction, particle size, and material 
parameters) and the assumption of molecular chaos. Given the velocity distribution, 
the analytical equations for the stresses, the energy dissipation, and other measures 
of the flow may be numerically integrated. 

2. Definitions and governing equations 
An idealized granular system composed of identical spheres in a steady, simple 

shear flow is considered. A Cartesian reference frame is used in which the x-axis is 
aligned with the mean velocity and the y-axis is aligned with the gradient of the 
mean velocity. The diameter of the spheres is CT and their material properties are 
characterized by a density p,  a friction coefficient ,u, and a coefficient of restitution 
e .  The velocity of a sphere located at  r in the volume element dr in the flow domain 
is c(r) .  This velocity has a mean component defined in terms of a constant velocity 
gradient Vu = du/dy by the equation 
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and a fluctuating component C(r)  relative to the mean velocity. The relationship 
among the velocity components is 

(2) c(r)  = u(r) + C(r ) .  

The sphere number density, which is assumed to be constant over the region of 
simple shear, is n. The probable number of sphere centres at r in the volume element 
dr about r is n dr. A single particle velocity distributionf(')(c, r )  is defined such that 
nf( ' ) (c ,  r )  dc dr is the probable number of spheres with centres at  r in dr  and with 
velocity c in dc at  any given time. The integral off(')(c, r )  over the velocity space is 

Sf(' ) (c ,  r )  dc = 1. (3) 

Because the mean velocity gradient is constant, the distribution of fluctuating 
velocities f (l)(C) is independent of position in the shear field. It is related to the single 
particle velocity distribution f ' ) ( c ,  r )  : 

f ( ' ) [C(r) ]  =f ( ' ) [c (r ) -u(r ) ,  r ] .  (4) 

The Boltzmann equation describing the evolution of the fluctuating velocity 
distribution f ( ' ) (C) ,  derived by Chapman & Cowling (1970), is 

where F(t, r )  is an external force and (a/at), denotes rate of change due to collisions. 
In a steady, simple shear flow, a/at = 0, u-Vu = 0, and F = 0. The assumptions of 
simple shear flow and a uniform concentration field imply that = 0. The 
resulting simplified form of the Boltzmann equation expressed in terms of the 
fluctuating velocity distribution is 

Equation (6) states that in steady, simple shear flow, the rate of change of the 
fluctuating velocity distribution f(')( C) owing to particle motion with respect to the 
mean velocity field (the left-hand side) is balanced by the rate of change off("(C) 
owing to collisions (the right-hand side). 

Conservation of mass is trivially satisfied, since the particles are assumed to be 
distributed uniformly in space. The balance equations for the conservation of 
momentum and kinetic energy in a steady, simple shear flow (Jenkins & Savage 
1983) reduce to 

P k + P  = constant, (7)  
Vu:(Pk+P") = y ,  (8) 

where Pk and P" are, respectively, the kinetic and the collisional components of the 
stress tensor and y is the rate of collisional dissipation of fluctuating kinetic energy. 

3. Derivation of the distribution of collisional configurations 
A more detailed discussion of the following rather brief derivation of the frequency 

of collisional integral from the kinetic theory of dense gases may be found in 
Chapman & Cowling (1970). Collisions among the spheres are assumed to be binary 
and impulsive, that is to say, instantaneous. 
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FIGURE 1.  A pair of identical spheres in contact. 

A pair of identical spheres in contact is shown in figure 1. The vector from the 
centre of sphere 1 to the centre of sphere 2 is crk = r2 - r,. The relative velocity of 
sphere 1 with respect to sphere 2 is c,, = c, - c,. A collision will occur between two 
spheres in contact if clz.k > 0. In the time interval At, prior to a collision, the centre 
of sphere 2 must be located within the cylinder about c,, shown in figure 1.  The 
base of the cylinder is the area cr2dk described by the solid angle dk about k 
on the associated sphere of radius cr about sphere 1.  The volume of the cylinder is 
a2(c,,.k)dkAt. As At approaches dt it  becomes an infinitesimally thin disk on the 
associated sphere. The number density at the surface of the associated sphere is 
nx where ~ ( v ) ,  a function of the solid fraction v,  is the limiting value of the 
isotropic radial distribution function X(r, v) at r = cr. An analytic expression for 
~ ( v )  determined numerically by Carnahan & Starling (1969) for a system of identical 
spheres is 

x ( v )  = # 2 - v ) / ( l - v ) 3 .  (9) 

The probable number of spheres with centres in the infinitesimal disk on the 
associated sphere about sphere 1 at a point defined by k with velocity c, in dc, a t  any 
given time is 

n~f"'(~,, rl + crk) a2(c,,-k) dkdc, dt. 

A specific collisional configuration in which the centre of sphere 2 is located at crk 
with respect to the centre of sphere 1 with the velocity c, in dc, and sphere 1 has the 
velocity c1 in dc, is denoted by the triad of vectors (c,, c,, k). The probable number 
of such collisional configurations which occur per unit volume per unit time is 

n2xf(l)(c,, r1)f1)(c,, r ,  + ak) u2(cl2. k) dk dc, dc,. (10) 

The frequency of collision per unit volume N,, is the integral of (10) over all 
collisional configurations where c,, - k > 0 : 
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The independence of the single particle velocity distributions follows from the 
assumption of molecular chaos. 

The normalized distribution of collisional configurations C(,)(C,, c,, k)  which 
follows from (10) is 

Within the limitations of the assumption of molecular chaos, 0') represents the 
distribution of collisional configurations, or colliding pairs of particles, which would 
be found in a real system with the same physical parameters (shear rate, solid 
fraction, sphere diameter, and material properties). That is, C(,)(C,, c,, k) dk dc, dc, is 
the fraction of collisional configurations with c1 in dc,, c, in dc,, and k in dk in the 
set of all collisional configurations. In  contrast, the distribution F(,)(C,, c,, k)  where 

(I4-l F(,)(c,, c,, k) = f ( ' ) (~ , ,  r,)f(')(~,, r1 + ck)  

defines the distribution of configurations with c1 and c, and k chosen at random. 
In the Monte Carlo simulation a collisional configuration is constructed by 

choosing a pair of particle velocities c, and c, randomly from the single particle 
velocity distributionf(l) represented by an array in the computer memory and by 
specifying the position of particle 2 with respect to particle 1 by randomly choosing 
a direction k. The distribution of the configurations so chosen is defined by F(,) .  A 
subset of configurations is chosen, from the set of configurations chosen at random 
defined by F(,) ,  in such a manner that the distribution of configurations in the subset 
is defined by 0,). The post-collision velocities which result from the collisions 
occurring in the subset of collisional configurations replace the pre-collision 
velocities chosen from the array which represents the single particle velocity 
distribution f(l). 

4. The Monte Carlo simulation 
A single particle velocity distribution f ( l )  may be approximately determined by 

recording the velocities of particles passing through a small window in a real system 
over a sufficient period of time. Similarly,f(l) is defined in the Monte Carlo simulation 
by the flow of particle velocities through a velocity array defined in the computer 
memory over the course of the simulation. In a statistical sense, the current state of 
the velocity array in the Monte Carlo simulation is analogous to the current velocities 
of a like number of particles in the real system. 

The first step in the Monte Carlo simulation is the definition of an array to 
represent f(l)( C), the distribution of fluctuating velocities. The array is dimensioned 
to contain the translational and rotational components of n velocities. This array 
may be thought of as containing the current fluctuating velocities of n spheres in the 
system being simulated. If the array were sampled over a sufficiently long interval, 
the sample would approximate the velocity distribution f(l). The velocities in the 
array are initialized to zero. 

A collisional configuration (c,, c,, k) is created by choosing the fluctuating 
velocities C, and C, at random from the array and a direction k uniformly at random 
in space. The particle velocities c1 and c, relative to the mean velocity at the point 



482 M .  A .  Hopkins and H .  H .  Shen 

of contact, are constructed by adding a mean velocity component to the chosen 
fluctuating velocities C, and C,:  

C, = C,-%ak.Vu, ( 1 4 4  

C, = C,+;ak.Vu. ( 1 4 4  

The configurations chosen at  random belong to the set of configurations defined by 
the distribution F(2)  (equation (13)). In order to create the subset of configurations 
defined by the distribution C@) (equation (12)), the constraint 

Cl,.k-/3R > 0 (15) 

is imposed on each configuration in the set chosen at  random. In (15), R is a number 
chosen anew with each configuration from a random sequence distributed uniformly 
between 0 and 1,  and /3 is a constant parameter, greater than any value of clz.k 
which is likely to be encountered during the simulation. The configurations which 
satisfy this constraint belong to the subset of configurations defined by Ct2). 

F(2)(~1, c2, k) dkdc, dc, is the fraction of configurations chosen at random with c, in 
dc,, c,, in dc, and k in dk. The fraction of these configurations which satisfy the 
constraint (15) is (c,,-k)/P. Therefore the effect of applying the constraint to the 
configurations chosen at  random is to multiply the distribution of configurations 
chosen at  random F@) by (c,,-k)/P. This produces the distribution of collisional 
configurations scaled by (c , , -k) /P ,  where ( ) denotes expected value. Although 
the distribution 02) is scaled, the probability of one collisional configuration (c,, c2, k )  
occurring relative to any other is preserved. 

Collisions are generated from the set of randomly chosen collisional configurations. 
The post-collision velocities are calculated from a given configuration (cl, c,, k) using 
a rigid particle collision model derived from the balance laws for linear and angular 
momentum conservation and closure conditions for friction and restitution. The 
collision model is described in the Appendix. 

In a real system, a particle's pre-collision velocity is replaced by its post-collision 
velocity. In the Monte Carlo simulation the velocity state of the system is 
represented by the n-dimensioned velocity array. Therefore, in the collisions which 
occur in the subset of configurations C@) which satisfy the constraint (15), the pre- 
collision velocities of the spheres are replaced in the array by the corresponding post- 
collision velocities. The pre-collision velocities C, and C,  are replaced by the 
fluctuating components of the' post-collision velocities c: and cz : 

C: = cT+$gk-Vu, C: = C,*-g~k.VU. (16% 6 )  

Again, in a real system, as a particle moves through the shear field in the direction 
of the mean velocity gradient, its absolute velocity remains constant, while the mean 
velocity measured at  the location of the particle's centre changes. Therefore, its 
fluctuating velocity, which is the difference between the two, changes also. The rate 
of change of fluctuating velocity owing to translation is 

dC/dt = - C-VU, ( 1 7 4  

which may be expressed in finite difference form as 
c n + l  = C,"-Cr.VuAt, 

where the superscript n denotes time and the subscript i denotes a particle. The 
change in fluctuating velocity owing to translation is modelled in the Monte Carlo 
simulation by applying (17 6 )  to the translational component of each velocity C, in 
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the velocity array after each collision which satisfies the constraint (15) .  The 
timestep At in (17 b )  is the reciprocal of the average frequency of collision N12 which 
is calculated using the numerical equivalent of ( 1  1) 

N,, = rcn2Xa2(c12.k), (18) 
where ( ) denotes an average over each collision in the set of configurations chosen 
at random. 

In summary, a step in the simulation process consists of choosing a configuration 
at  random and calculating post-collision velocities. If the configuration satisfies the 
constraint (15) ,  then the two pre-collision velocities chosen from the array are 
replaced by the post-collision velocities, and the rest of the fluctuating velocities in 
the array are updated by applying ( 1 7 b ) .  The timestep At in (17b) is the reciprocal 
of the average frequency of collision (18)  which is calculated concurrently in the 
simulation over a period of a large number of collisions in an iterative fashion. To 
begin the simulation, an initial frequency of collision is assumed. After a large 
number of collisions, the frequency of collision is recalculated and the simulation 
continues. As this iterative process is repeated, the frequency of collision approaches 
a stationary value. At the same time, the velocity distribution f (l), obtained by 
sampling the entire velocity array uniformly at regular intervals, becomes 
statistically stationary. 

It is essential to emphasize the difference between the collisions in the set of 
configurations chosen at  random (described by PCz)) and the subset of these 
configurations (described by U2)) which satisfy the constraint (15) .  The collisions in 
the subset of configurations which satisfy (15)  are used to create the velocity 
distribution f(l)  by replacing the pre-collision velocities chosen from the array by 
post-collision velocities. Given the velocity distribution fa )  it is then possible to 
numerically integrate the theoretical expressions for the frequency of collision (18)  
and the stresses, which are discussed below. In  the integration of the frequency of 
collision and the stresses, all of the collisions in the set of configurations chosen at 
random are used. 

5. The solution of the Boltzmann equation 
Equation (17 a) is similar to the left-hand side of (6), the Boltzmann equation for 

a steady, simple shear flow. Equation (17b) is applied to each velocity in the array 
at  each timestep during the Monte Carlo simulation. Since the array represents the 
velocity distribution f(l) ,  (17b) is, in effect, applied to the velocity distribution at 
each timestep. The changes depend on C. Taking the dot product of (17a)  with 
a f /aC yields 

(19) 
-.- ac a j  = - af = -c.vu.- af 
at ac at ac' 

This equation describes the change in f owing to convection, which is the left-hand 
side of (6), the simplified Boltzmann equation. Equation (6) states that in steady, 
simple shear flow, the rate of change of the fluctuating velocity distribution f ( l ) (  C )  
owing to particle motion with respect to the mean velocity field is balanced by the 
rate of change off (l)( C) owing to collisions. This is precisely what occurs in the Monte 
Carlo simulation where changes to the velocity array by collisions are balanced, at  
steady state, by the changes to the velocity array resulting from the use of (17b). A 
corollary to this argument is that the energy dissipated in collisions is resupplied 
from the mean shear flow. 
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FIQURE 2. The solution of (20), the finite-difference form of (6), the simplified Boltzmann equation 
for a steady, simple shear flow of identical spheres with v = 0.3, e = 0.3, p = 0, n = 200, and 
dulay = 1. 

In order to demonstrate more clearly that the velocity distribution generated by 
the Monte Carlo simulation is a solution to the simplified Boltzmann equation, we 
compare the two sides of (6) using the generated velocity distribution. 

The Monte Carlo simulation was run for 20 million collisions for v = 0.3, e = 0.3, 
,u = 0 ,  n = 200, and du/dy = 1. During the simulation, three distinct velocity 
distributions were compiled. The three distributions were constructed by sorting the 
z-, y-, and z-components of velocities into three-dimensional (86 x 70 x 70) arrays. 
The dimensions of the arrays allowed ranges of about 3.5 standard deviations of each 
velocity component in both the positive and negative directions. The first array was 
f(l)(C), the distribution of velocities found in the flow. This was constructed by 
sorting the entire n-dimension velocity array discussed above into the distribution 
array a t  intervals of n collisions. The second array was an array of pre-collision 
velocities. This was constructed by sorting each pair of pre-collision velocities into 
the array prior to each collision satisfying constraint (15). The third array was an 
array of post-collision velocities. This was constructed by sorting each pair of post- 
collision velocities into the array following each collision satisfying constraint (15). 
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The arrays were normalized following the simulation to yield probability density 
functions defining the general distribution of particle velocities f(l), the distribution 
of pre-collision velocities f@), and the distribution of post-collision velocities f 3 ) ,  
respectively. Each distribution was zero-padded and smoothed in the x-direction 
using a low-pass filter with a transition frequency of 0.05 cycle per data interval. 

Since a given pre-collision velocity C is destroyed in a collision, the product of 
the average frequency of collision (equation (18)) and the second distribution 
is the average rate of destruction of the given Velocity. Similarly, the product of 
the average frequency of collision (equation (18)) and the third distribution is the 
average rate of creation of a given velocity. The difference between the two 
represents the net rate of change off(l)(C) owing to collision. 

Equation (6) may be rewritten in terms of the three velocity distributions as 

- Cj du/dy n[f("( P'v'~) -f(')( C-1*'k)]/(2AC) = N12[f(3)( Cjk) -f")( @")I, (20) 

where the superscripts i ) j ) i i  denote array elements corresponding to the x-, y-, x -  
components of the chosen velocity. This equation was solved for 10000 randomly 
chosen values of C. For each value of C a circle is plotted on figure 2. The abscissa 
of the circle corresponds to the value of the left-hand side of (20) and the ordinate 
corresponds to the value of the right-hand side of (20). The increased scatter at  lower 
values is caused by the decreasing magnitude of the terms relative to the error in the 
distributions owing to sample size. 

6. Stress calculations 
Stresses generated in a granular flow have a kinetic component caused by 

momentum carried across a surface in the flow by particle motion and a collisional 
stress component caused by momentum transferred across a surface in the flow 
between colliding particles. The kinetic component of stress Pk is given by the 
equation 

Pk = pv f(l)(C) CCdC. (21) s 
The collisional component of stress P is found by averaging the flux of linear 

momentum akm(c,* - c2)  in a given collisional configuration over all possible 
configurations occurring per unit volume and time given by (10) in which c,,.k > 0 
as 

After the velocity array becomes statistically stationary, the analytic expressions for 
the stresses may be calculated numerically. The expression for the kinetic stress (21) 
has the numerical equivalent 

where ( ) denotes an average over each velocity in the velocity array sampled at  
uniform time intervals after the array reaches statistical equilibrium. The expression 
for the collisional stress (22) has the numerical equivalent 

Pk = pv( CC), (23) 

P = .nn2X@(km(c:-c2) (CI2.k)>, (24) 

where ( ) denotes an average over each collision in the set of configurations chosen 
at  random after the velocity array reaches statistical equilibrium. 
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7. Sensitivity of the Monte Carlo simulation 
The size of the velocity array, the period of iteration in the calculation of the 

frequency of collision, and the parameter /3 in constraint (15) must be chosen with 
care. The following suggestions are based on sensitivity studies described in Hopkins 
(1987). The velocity array should be dimensioned to contain the velocities of at  least 
100 (imaginary) particles. A greater number of velocities will marginally increase the 
accuracy, while increasing the running time. Fewer particles may create the random 
fluctuations characteristic of small systems. A t  least 100 collisions per particle should 
be allowed to equilibrate the velocity array. The period between successive 
calculations of the frequency of collision should be at  least 10 collisions per particle. 
In both cases only those collisions which satisfy (15) are counted. 

The value of /3 used in the constraint (15) should be equal to the largest value of 
c,,-k encountered in the simulation. As long as the chosen value of /3 is greater than 
or equal to any value of c,, - k encountered during the simulation, the results will be 
completely insensitive to the value of p. However, if /3 is made arbitrarily large, the 
running time of the simulation will increase proportionately. In practice, a value of 
/3 five times the expected value (c , , -k)  is sufficient. 

8. Simulation of an equilibrium system of smooth, elastic spheres 
A Monte Carlo simulation of a system of identical, smooth, elastic spheres in 

equilibrium was performed. Analytical solutions exist for such a system (Jeans 1948). 
The simulated system consisted of 125 particles. The velocities were initially of 
uniform magnitude with random directions. The velocity distribution obtained by 
sampling the velocity array over a period of 2000000 collisions after the system 
reached equilibrium was an isotropic Maxwellian given by 

(25) j ( ' ) ( ~ >  = ( 2 n ~ ) - a ~ ~ e x p  ( -c'/~T), 

where T = f ( C -  C) is the translational temperature which is fixed by the initial 
velocities of the spheres. In terms of the translational temperature, the stresses in the 
system at equilibrium are 

Pk = 3vT2, (26) 

PC = 12v2xT2. (27) 

The stresses calculated by the Monte Carlo simulation were within 0.1 % of the exact 
values. Jeans (1948) also gives an analytical expression for the velocity-dependent 
mean free path, the mean length of the path travelled by a particle with velocity C 
between successive collisions. The Monte Carlo results for a period of 2000000 
collisions were essentially identical to the values given by Jeans except for extremes 
of velocity where samples were sparse (Hopkins 1987). The velocity-dependent mean 
free path involves the residence time of a given velocity in the velocity array between 
successive collisions (or in real terms, the time between collisions for a particle 
moving with a given velocity) and, therefore, depends on the constraint (15). 

9. Simulation of a rapidly sheared system of identical, smooth spheres 
Since no exact solutions exist for systems of spheres in steady, simple shear, the 

Monte Carlo simulation must be verified by comparison with results obtained from 
complete Newtonian computer simulations. Hopkins & Louge (1991) contains a 
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FIGURE 3. The non-dimensional normal stress (a) Pzz, (b) P&, (c) Puv, ( d )  P,, versus solid fraction for 
a system of uniform diameter, smooth (p = 0) spheres in simple shear for several values of the 
coefficient of restitution e, + , e = 0.3; 0,  e = 0.6; 0, e = 0.9. 0, Monte Carlo ; 0, full simulation ; 
---. Richman & Chou. 

description of the mechanics of a complete simulation of a periodic, steady, simple 
shear flow. The complete simulation uses the same rigid particle collision model as 
the Monte Carlo simulation. The collision model is described in the Appendix to the 
present work. 

Richman & Chou (1992) derived constitutive relations for a system of identical, 
smooth spheres valid for all solid fractions. In figures 3 and 4 the solution of Richman 
& Chou is compared to the results of the Monte Carlo simulation and the complete 
Newtonian simulation. Both the full simulations and the Monte Carlo simulations 
were performed with systems of 125 identical spheres. In  both simulations stresses 
were calculated over a period of 1000 collisions per particle. In the Monte Carlo 
simulation, the period of iteration for the frequency of collision was 1250 collisions 
and the parameter /? was at  least 5 ( c , , -k ) .  In the full simulations, the average 
overlap between colliding particles (see Hopkins & Louge 1991) was approximately 
1 YO of the calculated mean free path. The figures show the dependence of the stress 
components P,,, P,,, PUv, and eZ and the ratios PU,/P&, Pzx/Pyu, and Pz,/P,, on 
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WQURE 4. The ratio of (a) shear to normal stress Pyz/Pyu, ( b )  the normal stresses Pzz /P~y ,  and 

(c) the normal stresses P,,/Py, versus solid fraction. Key as for figure 3. 

the coefficient of restitution e and the solid fraction v. The stresses are the sum 
of the kinetic (23) and collisional (24) components and are non-dimensionalized by 
p(crdu/dy)'. Each figure shows results for three values of e ,  denoted by crosses, 
squares, and diamonds. The small symbols, large symbols, and lines denote respect- 
ively the results of the Monte Carlo simulation, the full simulation, and the theory 
of Richmond & Chou. At the highest solid fraction (v = 0.6), the full simulation was 
unable to  shear the material. 

The general agreement of the three data sets is remarkable. However, the results 
of the Monte Carlo simulation and the complete simulation diverge a t  low values of 
the coefficient of restitution and at high solid fractions. The divergence a t  these 
extremes is due to the breakdown of the molecular chaos assumption. 
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10. A general discussion of the results 
The breakdown of the molecular chaos assumption implies the emergence of 

structure or anisotropy and local inhomogeneity in the concentration field. Structure 
a t  high densities is expected. Campbell (1986) studied the creation of a distinct, 
layered microstructure in dense shear flows. Recently Hopkins & Louge (1991) have 
defined a dynamic microstructure which depends on particle inelasticity. The basic 
mechanism of the inelastic microstructure is the formation of particle clusters, local 
regions of above average particle density. Hopkins & Louge report the results of a 
series of simple shear simulations with identical smooth disks. These results show 
that the effects of the inelastic microstructure, especially noticeable in the P,, kinetic 
stress component, are inversely related to the coefficient of restitution and increase 
with the number density. The divergence shown in figures 3 and 4 between the Monte 
Carlo simulation and the complete simulation a t  low values of the coefficient of 
restitution is probably the result of the inelastic microstructure. The divergence a t  
higher solid fractions is probably the result of the dense microstructure and velocity 
correlations between colliding particles. 

The results of the Monte Carlo simulation and the theory of Richman & Chou 
diverge a t  low values of the coefficient of restitution. Since both assume molecular 
chaos, the differences are probably due to deviations from the joint Maxwellian form 
of the velocity distribution used in the Richman & Chou theory. The kinetic stress, 
the dominant component a t  low solid fractions, being proportional to the second 
moments of the velocity, is more closely related to the form of the velocity 
distribution than the collisional stress. The kinetic stress is negligible at moderate to 
high solid fractions where the Monte Carlo simulation and the theory of Richman & 
Chou are in total agreement. 

1 1. Conclusions 
In  this work a Monte Carlo simulation for the study of rapidly deforming, simple 

shear flows of identical inelastic disks or spheres has been developed. The Monte 
Carlo simulation is based on the theoretical framework of the kinetic theory of dense 
gases. In the Monte Carlo simulation, space is discarded in an explicit sense and 
replaced by an isotropic, homogeneous, and uncorrelated space based on the 
assumption of a state of simple shear, a uniform concentration field, and molecular 
chaos. Although, the examples discussed above, in the development of the Monte 
Carlo simulation, used smooth, frictionless spheres, the simulation applies with equal 
accuracy to flows of rough spheres. 

The Monte Carlo simulation generates the distribution of fluctuating velocities 
which corresponds to the parameters of the flow (shear rate, solid fraction, particle 
size and material properties) and the given assumptions. This velocity distribution 
is a numerical solution to the simplified Boltzmann equation (6) under these 
conditions, just as the distribution produced by a full, Newtonian simulation is a 
solution to (6) without the molecular chaos assumption. The Monte Carlo simulation 
defines the limits to the accuracy of analytical granular flow theories based on the 
kinetic theory of dense gases and the assumption of molecular chaos. In  comparison 
with the theory of Richman & Chou, it shows that the most sophisticated theories are 
close to that limit. In comparison with the complete simulations, it  shows that 
further theoretical progress depends on an understanding of microstructure. 
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Appendix: Collision model used in the Monte Carlo simulation 
Collisions between disks or spheres are assumed to be binary and impulsive. 

Spheres (disks) have constant coefficients of restitution e and friction p. The collision 
equations are derived for the general case in which the particles have different 
diameters. 

A local (n ,  t)-coordinate frame is defined with its origin at  the point of contact and 
the normal axis n in the direction of the vector crk from the centre of sphere (disk) 
1 to the centre of sphere (disk) 2 (see figure 1) .  The tangential axis t is the direction 
of the component of relative velocity at the contact point clZc which is perpendicular 
to  the n-axis: 

t = [ c l z c -  ~ ~ l , , ~ ~ ~ ~ l l l ~ l , c - ~ ~ l , , ~ ~ ~ ~ l .  (A 1) 

clzc = c l + r l x o l - c c , - r r , x o , ,  (A 2) 

The relative velocity at the contact point is 

where r is the vector from the point of contact to the centre of the sphere (disk). 
The post-collision velocities, denoted by an asterisk, are derived from equations for 
the conservation of linear and angular momentum. The equation describing the 
conservation of linear momentum is 

m,(c,* - c,) = - ml(c? -cl) = P ,  (A 3) 

where P is the collisional impulse on particle 2. The equations describing the 
conservation of angular momentum about the point of contact for each sphere (disk) 
are 

I,w? = I l o l + r , x P ,  I,w,* = I , w , - r , x P ,  (A 4 %  b )  

where I is the polar moment of inertia. The coefficient of restitution e characterizing 
the incomplete restitution of translational velocity in the n-direction yields 

(cT-c,*).n = -e (c l -cc , ) -n .  (A 5 )  

(A 6) 

The n-component of the collisional impulse follows from (A 3) and (A 5) : 

= (1 + e )  [(ml m,)/(m, +%)I ( C 1 , c . n ) .  

The last equation required to  close the system of equations for the post-collision 
velocities is a frictional closure equation defining the tangential impulse at  the point 
of contact. The tangential component of the impulse is initially assumed given in 
terms of the normal impulse by a Mohr-Coulomb relationship : 

P - t  = 1LP.n. (A 7) 
The tangential impulse acts on each particle a t  the point of contact to  retard the 
tangential component of the relative velocity at the point of contact c lZc .  In  collisions 
in which the relative velocity a t  the point of contact has a large normal component 
and a small tangential component, the use of (A 7) may cause a reversal of the 
relative tangential velocity, which is not allowed. This is accomplished by limiting 
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the tangential impulse to the value which completely arrests, but does not reverse, 
the tangential velocity. In  this limiting case, the post-collision tangential velocity 
a t  the point of contact is zero: 

(A 8) 

The tangential impulse which follows from (A 3), (A 4a, b ) ,  and (A 8) is 

c:2,. t = 0. 

P. t = (clzc - t ) / (  l/m, + r: /I l  + l/m, + $ / I 2 ) .  

Equations (A 7) and (A 9) are alternative frictional closure equations. The lesser of 
the tangential impulses is used with the normal impulse to calculate the components 
of the collisional impulse in the frame of reference of the general flow. The post- 
collision velocities are then calculated using (A 3) and (A 4a, b ) .  
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